
AFRL-AFOSR-UK-TR-2013-0059

 Software Regression Verification

Professor Ofer Strichman

 Technion Israel Institute of Technology
 Information Systems Engineering
 Technion City, Haifa 32000 Israel

EOARD Grant 11-3006

Report Date: December 2013

Final Report from 15 November 2010 to 14 November 2013

Air Force Research Laboratory
Air Force Office of Scientific Research

European Office of Aerospace Research and Development
Unit 4515, APO AE 09421-4515

Distribution Statement A: Approved for public release distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

11 December 2013
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

15 November 2010 – 14 November 2013
4. TITLE AND SUBTITLE

Software Regression Verification

5a. CONTRACT NUMBER

FA8655-11-1-3006
5b. GRANT NUMBER

Grant 11-3006
5c. PROGRAM ELEMENT NUMBER

61102F

6. AUTHOR(S)

Professor Ofer Strichman

5d. PROJECT NUMBER

5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Technion Israel Institute of Technology
Information Systems Engineering
Technion City, Haifa 32000 Israel

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
Unit 4515
APO AE 09421-4515

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL/AFOSR/IOE (EOARD)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

AFRL-AFOSR-UK-TR-2013-0059

12. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution A: Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The objective of this research effort was to study and develop a formal methodology for conducting automated or semi-
automated software regression testing. To that end, we have developed and extended a regression verification tool (RVT) in
various ways, which together improved tremendously its functionality, robustness and completeness. Recall that the main
problem that RVT addresses is that of deciding whether two similar programs are equivalent under an arbitrary yet equal
context, given some definition of equivalence. More precisely, given a (possibly partial) mapping between the functions of the
two programs, the problem is to show which of them are equivalent in an arbitrary context. The basic definition of equivalence
that we support is called partial equivalence, which means that two programs emit equal outputs given the same inputs, or at
least one of them does not terminate. For most useful definitions of equivalence this problem is undecidable, as is the problem
of partial correctness (what most people refer to as general program verification) in general.

15. SUBJECT TERMS

EOARD, software engineering, regession verification, formal logic

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18, NUMBER
OF PAGES

24

19a. NAME OF RESPONSIBLE PERSON
James H Lawton, PhD

a. REPORT
UNCLAS

b. ABSTRACT
UNCLAS

c. THIS PAGE
UNCLAS

19b. TELEPHONE NUMBER (Include area code)

+44 (0)1895 616187

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Final report
Contract FA8655-11-1-3006

Submitted to the European Office of Aerospace Research and
Development

Ofer Strichman

Information Systems Engineering, IE, Technion, Haifa, Israel

During the three years of the project we developed our regression verifi-
cation tool (RVT) in various ways, which together improved tremendously its
functionality, robustness and completeness. Recall that the main problem that
RVT addresses is that of deciding whether two similar programs are equivalent
under an arbitrary yet equal context, given some definition of equivalence. More
precisely, given a (possibly partial) mapping between the functions of the two
programs, the problem is to show which of them are equivalent in an arbitrary
context. The basic definition of equivalence that we support is called partial
equivalence, which means that two programs emit equal outputs given the same
inputs, or at least one of them does not terminate. For most useful definitions of
equivalence this problem is undecidable, as is the problem of partial correctness
(what most people refer to as general program verification) in general. The latter
is a term suggested by T. Hoare in 1960’s, to denote the problem of checking that
a certain condition holds at a particular location assuming the program can get
there. It can be cast as a reachability problem: can the program reach a certain
part of the code that is guarded by the negation of the checked condition? It is
not difficult to reduce this problem to a problem of proving partial equivalence:
simply make the program emit output ’0’ if that part of the code is reached, and
’1’ otherwise, and compare it to a program that only emits ’1’. This proves that
equivalence is undecidable as well.

Even in cases that equivalence can be determined in theory (for example when
there are no loops and recursive calls), there are tremendous technical problems
in performing this task when it comes to an industrial programming language
such as C, because of issues such as dynamic memory allocation and the ability
of programs to access the memory with arbitrary references. A major part of
our research is in fact dedicated to such issues: how to enforce isomorphic heaps
at the entrance to the two functions, and how to check that they are isomorphic
at the exit point.

Many of the technical details of our progress in the last three years were
reported in my previous annual reports, so I will only mention them here by
title.

– Support for checkingMutual termination. Two programs are said to be mutu-
ally terminating if they terminate on exactly the same inputs. RVT’s ability
to prove mutual termination may expose termination errors introduced by a
new version of the code. This work has been reported in the masters’ thesis
of Dima Elenbogen [Ele13] and in an article [EKS12].

Distribution A: Approved for public release; distribution is unlimited.

– A theoretical investigation into the possibilities and limitations of prov-
ing partial equivalence of multi-threaded programs. So far this problem has
only been studied for the case of single-threaded deterministic programs.
We showed a method for regression verification to establish partial equiva-
lence of multithreaded programs. Specifically, we developed two proof-rules
that decompose the regression verification between concurrent programs to
that of regression verification between sequential functions, a more tractable
problem. This ability to avoid composing threads altogether when discharg-
ing premises, in a fully automatic way and for general programs, uniquely
distinguishes our proof rules from others used for classical verification of
concurrent programs. The results of this work are summarized in [CGS11].
We recently also started considering the effect of synchronization primitives
and dynamic thread creation.

– Support for programs with Goto statements. As I reported last year in some
detail, RVT now supports translating programs with goto-statements into
one with While loops, which can then be handled in the standard flow of
RVT.

– We developed several techniques for improving completeness. The develop-
ment of these methods was driven by our experience with checking real
programs. I describe these techniques in detail in Appendix A. They were
only published thus far as part of a thesis [Ele13], and we currently work on
an extended version of [EKS12] that will include them as well.

We are currently working on new proof rules, based on computing weakest
pre-conditions expressions, and applying k-induction. Some details about this
effort is given in Appendix B.

Finally, we are currently in the midst of improving RVT’s capability to han-
dle recursive data structures. Performing regression verification over programs
that incorporate pointers, arrays and recursive data structures poses several
challenges. When asserting the equality of arrays we must assert the equality
of all their members. When checking the equality of structures, we must check
equality on all of its members recursively. When checking the equality of point-
ers, asserting the equality of the addresses is meaningless; we must dereference
them and check the actual value. When these pointers point to a recursive data
structure, the comparison should be pairwise over all the leaves of the structure.
Many of these issues were solved with a tool called unitrv, built recently by
Daniel Kroening based on the infrastructure of Cprover. This tool can prove
the partial equivalence of two functions, even if their inputs include pointers to
recursive data structures. It effectively assumes that locations pointed to by an
equivalent access path, contain the same data. For example, if both functions
access p -> next -> next -> data, and p, next, data are mapped to one
another in the two functions, then they read the same value initially. We are
currently working on fully integrating this tool into RVT, in order to improve
its completeness, and reach the point in which RVT can verify the equivalence
of real industrial programs. So far the issue of pointers was a hurdle in reaching
this point.

Distribution A: Approved for public release; distribution is unlimited.

To conclude, I would like to thank the AF for this generous grant with which
I funded this research.

References

[CGS11] Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. Regression verification
for multi-threaded programs. In Proc. of 13th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI’12),
2011.

[EKS12] Dima Elenbogen, Shmuel Katz, and Ofer Strichman. Proving mutual termi-
nation of programs. In Armin Biere, editor, Haifa Verification Conference
(HVC), 2012.

[Ele13] Dima Elenbogen. Proving mutual termination of programs. Master’s thesis,
Technion, Israel Institute of Science, 2013.

[FB88] C.N. Fisher and R.J.L. Blanc. Crafting a Compiler. The Benjamin-
Cummings Series in Computer Science. Benjamin/Cummings, 1988.

[FOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program dependence
graph and its use in optimization. ACM Trans. on Computer Systems,
9(3):319–349, 1987.

[God08] Benny Godlin. Regression verification: Theoretical and implementation as-
pects. Master’s thesis, Technion, Israel Institute of Technology, 2008.

[GS08] Benny Godlinand Ofer Strichman. Inference rules for proving the equiva-
lence of recursive procedures. Acta Informatica, 45(6):403 – 439, 2008.

[GS11] Benny Godlin and Ofer Strichman. Regression verifica-
tion. Technical Report IE/IS-2011-02, Technion, 2011.
http://ie.technion.ac.il/tech reports/1306207119 j.pdf.

[Hec77] M.S. Hecht. Flow Analysis of Computer Programs. North Holland, 1977.
[HRB90] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using depen-

dence graphs. ACM Trans. on Computer Systems, 12(1):26–61, 1990.
[KKP+81] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence

graphs and compiler optimizations. In Conference Record of the Eighth ACM
Symposium on Principles of Programming Languages, pages 207–218, 1981.

[Nie85] F. Nielson. Program transformation in a denotational setting. ACM Trans.
Prog. Lang. Sys., 7:359–379, 1985.

[NNH05] F. Nielson, H.R. Nielson, and C. Hankin. Principles of program analysis.
Springer-Verlag, Berlin, 2005.

[SSS00] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using
induction and a sat-solver. In Hunt and Johnson, editors, Proc. Int. Conf.
on Formal Methods in Computer-Aided Design (FMCAD 2000), 2000.

[WMM95] R.A. Wilhelm, D.A. Maurer, and D. Maurer. Compiler Design. Interna-
tional Computer Science Series. Addison-Wesley, 1995.

A Methods for improving completeness

No sound method of proving mutual termination can be complete because this
problem is undecidable, but we should strive to improve the completeness of
our approach. The two major reasons of its incompleteness are related to the
overapproximation of the real behavior caused by replacing recursive calls with

Distribution A: Approved for public release; distribution is unlimited.

uninterpreted functions. Refinement of our uninterpreted functions can solve a
few of overapproximation-related issues.

However, there exist other reasons for the incompleteness in our approach.
In this appendix we will address a few of them that we have coped with. Some
of them are applicable to or refine the output of the decomposition algorithm
presented in a technical report [GS11] for verification of partial equivalence. Such
improvements are valuable for proving mutual termination too because knowing
that some functions are partially-equivalent can be beneficial for establishing
their mutual termination.

A.1 Reducing prototypes of loop-replacing functions

Appendix C of [God08] gives a detailed description how loops are replaced with
functions. Local variables that are used inside loops are part of the interface
of the replacing function, even if they are written-to before being read. The
problem is that these variables are local and, hence, receive a non-deterministic
value and thus make the uninterpreted functions representing the loop return
different values. The following example demonstrates the issue.

Example 1. Consider the pair of C programs listed in Fig. 11. Extracting the

int main() {
int y, x = 1;
while (x < 10) {

y = 2 + x;
x = y + y;

}
return x*2;

}

int main’() {
int x’ = 1, y’;
while (x’ <= 9) {

y’ = x’ + 2;
x’ = 2 * y’;

}
return x’ << 1;

}

Fig. 1. Two versions of programs each of which contains a loop with an uninitialized
variable y (y′) which is written-to before ever being read.

loops into separate recursive functions results in the two programs listed in Fig. 2.
When partial equivalence of 〈main, main′〉 is verified, 〈mainUF , main′UF

〉 are

generated as listed in Fig. 3. The values of y and y′ in 〈mainUF , main′UF
〉,

respectively, are non-deterministic. Consequently, not all the arguments passed
into calls uf(Loop main while1, &x, &y) and uf’(Loop main while1’, &x′, &y′)
are considered equal, because direct pointers are considered equal if they point
to equal values. Thus those calls are considered different. As a result, 〈mainUF ,

main′UF
〉 are not considered call-equivalent. Hence, RVT will fail to prove

1 Hereafter, the syntax of C is slightly violated, for instance, by ending identifiers of
side 1 with ’.

Distribution A: Approved for public release; distribution is unlimited.

int Loop main while1(int *px,
int *py)

{
if (!(*px < 10)) return 0;
*py = 2 + *px;
*px = *py + *py;
return Loop main while1(px, py);

}

int main() {
int y, x = 1;
Loop main while1(&x, &y);
return x*2;

}

int Loop main while1’(int *px’,
int *py’)

{
if (!(*px’ <= 9)) return 0;
*py’ = *px’ + 2;
*px’ = 2 * *py’;
return Loop main while1’(px’, py’);

}

int main’() {
int x’ = 1, y’;
Loop main while1’(&x’, &y’);
return x’ << 1;

}

Fig. 2. Two versions of programs from Fig. 1 after elimination of their loops.

...

int mainUF () {
int y, x = 1;
uf(Loop main while1, &x, &y);
return x*2;

}

...

int main′UF () {
int x’ = 1, y’;
uf’(Loop main while1’, &x′, &y′);
return x’ << 1;

}

Fig. 3. Parts of the program generated for proving the mutual termination of functions
main, main′, defined in Fig. 2.

Distribution A: Approved for public release; distribution is unlimited.

m-term(mainUF ,main′UF).
⊓⊔

There is no good reason to include the variables of loop-bodies which satisfy
the two following conditions, into the argument list of the functions that replace
the loop:

C1. before their values are ever read, some value is assigned into them, and
C2. they are no longer used after the body of the loop.

They may become mere local variables in the replacing functions.

int Loop main while1(int *px) {
int y;
if (!(*px < 10)) return 0;
y = 2 + *px;
*px = y + y;
return Loop main while1(px);

}

int main() {
int y, x = 1;
Loop main while1(&x);
return x*2;

}

int Loop main while1’(int *px’) {
int y’;
if (!(*px’ <= 9)) return 0;
y’ = *px’ + 2;
*px’ = 2 * y’;
return Loop main while1’(px’);

}

int main’() {
int x’ = 1, y’;
Loop main while1’(&x’);
return x’ << 1;

}

Fig. 4. Two versions of programs from Fig. 1 after replacement of their loops with
functions and reduction of variables y and y′ from the argument lists of those replacing
functions. See Fig. 2 for a comparison.

Example 2. Reconsider the programs given in Fig. 1 and note that variable y

(y′) in function main (main′) is initialized every time before being read in the
loop-body. In fact, there is a single execution path in that loop-body. Thus, y (y′)
satisfies condition C1. Moreover, note that it is not used since the end of the loop-
body, i.e., it satisfies C2 too. Hence, py (py′) may be reduced from the argument
list of the loop-replacing function Loop main while1 (Loop main while1′), and,
furthermore, y (y′) may become a local variable inside it as listed in Fig. 4. Now
m-term(main, main′) can be proven.

⊓⊔

Here is a description of the procedure we apply for detecting variables which
satisfy conditions C1 and C2. Validating C1 amounts to checking that a variable
is initialized before being read in every computation path in the loop-body block.
If it passed the check, C2 should be validated. The latter validation is done using

Distribution A: Approved for public release; distribution is unlimited.

live-variables analysis [Nie85]. If it establishes that the variable has stopped
being a live variable by the end of the loop-body, then C2 holds.

Two simple intraprocedural static analyses [Hec77] aid to validate C1 in a
checked loop-body block. The first analysis, which we call Write-To (WT), for
each node of the control flow graph of that block, finds variables that some-
thing is written to them in all execution paths leading to the node, includ-
ing writings in this node itself. The nodes of control flow graphs on which
we run our analyses are expressions in C-language. WT is a flow-sensitive for-
ward [FB88,WMM95] must [NNH05] analysis. Based on its results, the second
one, called Read-Uninitialized (RU), finds those variables that may be read be-
fore something is written to them, i.e., detects potential reads of uninitialized
variables. Those variables of the checked loop which are not listed in the results
of RU are written-to before being read in this loop-body, i.e., satisfy C1. RU is
a flow-sensitive forward may [NNH05] analysis. The both analyses are formally
defined in Tables 1 and 2.

kill function

kill(Bℓ) = ∅

gen function

gen(Bℓ) = def(B)
in all other cases:

gen(Bℓ) = ∅

Data flow equations WT
=

WTentry(ℓ) =

{

∅ if ℓ = init(S⋆)
⋂

{WTexit(ℓ
′) | (ℓ′, ℓ) ∈ flow(S⋆)} otherwise

WTexit(ℓ) =
((

WTentry(ℓ) \ kill(B
ℓ)
)

∪ gen(Bℓ)
)

, where Bℓ ∈ blocks(S⋆)
Table 1. Definition of WT analysis. This is an intraprocedural flow-sensitive forward
(F = flow(S⋆)) must (

⊔

=
⋂

) analysis. Let def(n) denote the set of the variables
updated in the control flow graph node n. See Chapter 2 of [NNH05] for understanding
the rest of the notations used here.

The described reduction of variables from the argument lists of loop-replacing
functions can be useful for proving partial equivalence too.

A.2 Mapping functions with different numbers of input arguments

Our normal method for regression verification applies a severe restriction on
function pairs mapped in mapF : for functions f ∈ P and f ′ ∈ P ′, 〈f, f ′〉 ∈
mapF only if f and f ′ have the same list of formal input parameter types.
Our method requires this in order to be able to check call-equiv(fUF , f ′UF

).

Distribution A: Approved for public release; distribution is unlimited.

kill function

kill(Bℓ) = ∅

gen function

gen(Bℓ) = {v | v ∈ use(B) ∧ v /∈ WTentry(ℓ)}

Data flow equations RU
=

RUentry(ℓ) =

{

∅ if ℓ = init(S⋆)
⋃

{RUexit(ℓ
′) | (ℓ′, ℓ) ∈ flow(S⋆)} otherwise

RUexit(ℓ) =
((

RUentry(ℓ) \ kill(B
ℓ)
)

∪ gen(Bℓ)
)

, where Bℓ ∈ blocks(S⋆)
Table 2. Definition of RU analysis. This is an intraprocedural flow-sensitive forward
(F = flow(S⋆)) may (

⊔

=
⋃

) analysis. Let use(n) denote the set of the variables
which are read in the control flow graph node n. See Chapter 2 of [NNH05] for under-
standing the rest of the notations used here.

However, sometimes it is possible to map functions with different number of
input arguments, as we will demonstrate in the following example.

Example 3. Consider two versions of a program listed in Fig. 5. Functions h

int h(int x) {
if (x <= 0)

return h(1 - x);
return x;

}

int h’(int x’, int b’) {
if (b’ != 0)

report’(”...”);
if (x’ <= 0)

return h’(1 - x’, b’);
return x’;

}

void report’(const char *s’) {
...

}

Fig. 5. Two versions of a program where functions h and h′ have different prototypes.

and h′ have different numbers of input arguments. However, argument b′ affects
neither the guarding conditions over recursive calls of h′ nor any value passed
into those recursive calls which does affect them. The value in b′ has no influence
on the future recursive calls of h′. Thus we can omit it from input comparisons
defined in CallEquiv (see [Ele13]). Namely, we can check call-equivalence
between h and the function defined in Fig 6.

⊓⊔

Distribution A: Approved for public release; distribution is unlimited.

int h′
⇃{b′}

(int x’) {

int b’ = nondet();
if (b’ != 0)

report’(”...”);
if (x’ <= 0)

return h′
⇃{b′}

(1 - x’);
return x’;

}

Fig. 6. Function h′
⇃{b′}

, derived from function h′ (see Fig 5) by removal of b′ from the

parameter list into the body of h′.

In Sect. A.3 we will formally present a method for detecting such input
arguments as b′ in function h′ from Ex. 3. We coin input arguments which have
no influence on the termination of their function termination-inert. But now we
will describe what we do with them assuming we have detected them.

We begin with the next definition which we need for this description. Given
two functions f and f ′, a projection of the parameter list of f ′ over the parameter
list of f is defined as follows:

Definition 1 (πf). Given two functions f and f ′ such that the parameter list
of f is a subset of the parameter list of f ′, and given a vector in′ of actual values
passed into f ′, define πf (in

′) to denote a reduced version of in′ after dropping
all the arguments that have no match in the parameter list of f .

Now consider two functions g and g′ such that g′ has a set of extra param-
eters B′ in comparison with g. Further assume we have detected that all the
parameters of B′ are termination-inert in g′. We move them from the parameter
list of g′ into the body of g′, i.e., make them simple local variables in g′ initialized
with a non-deterministic value. Having updated the parameter list of g′, we also
need to update all the calls of g′ correspondingly in the whole program where g′

was defined.

Definition 2 (f⇃B). Given function f in program P and a set B of this func-
tion’s input parameters, define f⇃B to denote the function derived from f by:

– moving the elements of B from the parameter list of f into the body of f ;
– initializing them with non-deterministic values;
– replacing all the calls to f in P with corresponding calls to f⇃B .

An example of a function derived in this manner is given in Fig. 6. Note that
for non-empty B, function f⇃B is non-deterministic. We must refine the earlier
definitions of termination and mutual termination in order to apply them to
non-deterministic functions.

– Termination. Let term(f(in)) denote the fact that f(in) terminates for all
its possible computations.

Distribution A: Approved for public release; distribution is unlimited.

– Non-termination. Let non-term(f(in)) denote the fact that there is no pos-
sible computation of f(in) which terminates. Note that for deterministic
functions non-term((f(in))) ≡ ¬term(f(in)). However, the latter is not
necessarily true for non-deterministic functions. Therefore, we need to rede-
fine m-term.

– Mutual termination. If either function f or function f ′ (or both) is non-
deterministic, then their mutual termination is defined as follows:

m-term(f, f ′)
.
= ∀in.

(

(term(f(in)) ↔ term(f ′(in))) ∧
(non-term(f(in)) ↔ non-term(f ′(in)))

)

.

Once we have achieved that the prototypes of the discussed functions g and
g′⇃B′

match, we can checkm-term(g, g′⇃B′
). But as far as the mutual termination

of g and g′ matters, the definition of m-term requires the same parameters in
both g and g′. We need to address the extra parameters of g′ in the following
refinement of the definition of mutual termination.

Definition 3 (Mutual termination of functions with respect to projec-
tion of parameter list). Two deterministic functions f and f ′ are mutually
terminating with respect to a subset of inputs if and only if for any input in of
f and any input in′ of f ′, the following holds:

in = πf (in
′) → (term(f(in)) ↔ term(f ′(in′))) .

Let m-termπf
(f, f ′) denote the fact that f and f ′ mutually terminate with

respect to a subset of inputs. The following inference rule allows to derive a
conclusion about m-termπg

(g, g′):

〈f, f ′〉 ∈ mapF ∧m-term(f, f ′
⇃B′

)

m-termπf
(f, f ′)

(m-term-π) , (1)

where B′ is the subset of the input parameters of f ′ missing in πf . A proof of
its soundness appears in [Ele13].

Note that the modifications which created g′⇃B′
do not necessarily preserve

the semantics of g′. Consequently, checking m-term(g, g′⇃B′
) usually involves

different uninterpreted functions.

Example 4. Reconsider functions h and h′ listed in Fig 5. Parameter b′ of the
prototype of h′ is a termination-inert input argument. It can be excluded from
the parameter list of h′. Function h′

⇃{b′}
, listed in Fig 6, and h, defined in Fig 5,

have the same prototype. Now RVT can prove m-term(h, h′
⇃{b′}

) and infer2

m-termπh
(h, h′).

2 In practice, RVT does not make the minute formal distinction between m-term and
m-termπf

in its output. They are reported in the same manner.

Distribution A: Approved for public release; distribution is unlimited.

A.3 Detecting termination-inert input arguments.

An algorithm for checking whether a given argument v of function f is a termination-
inert input argument of f consists of two stages. First, it builds a System Defi-
nition Graph [HRB90] (SDG) for program P where f is defined.

Briefly, an SDG is an extension of a Program Dependence Graph [FOW87,KKP+81]
(PDG) for multi-function programs. The original nodes of some function’s PDG
represent the statements of the function. The edges of the PDG represent data
and control dependencies between the statements of the function and thus define
their partial order: the semantics of the function is preserved if its statements
are executed in this order.

An SDG consists of PDGs for each function of the program plus the following
additions. Each function g of the program is associated with an entrance node
”Enter g”. For each input argument u of this function, the SDG contains a node
of type u = uing

and an edge entering this node and leaving node ”Enter g”.
Each node representing a call to function g has a leaving edge entering the
entrance node of g, i.e., ”Enter g”. In addition, for an expression expr passed
as parameter u in that call, there are a node of type uing

= expr with the two
following edges:

– an entering edge which leaves that function-call node, and

– a leaving edge which enters the recently mentioned node of type u = uing
.

The return value of g has its own dedicated node retvalg. Its entering edges
leave nodes whose statements affect the return value. Its leaving edges enter
nodes whose statements depend on the return value. Fig. 7 demonstrates an
example of an SDG built for the sub-program starting in function h′ from Fig 5.

At the second stage the algorithm checks whether any of the calls to function
f is reachable from node v = vinf

, where, recall, v is the name of the given input
argument. If none is reachable, then argument v is a termination-inert input
argument of f . The algorithm is presented in Alg. 1.

Example 5. Regard the SDG in Fig. 7, built for the sub-program starting in
function h′ from Fig 5. It has no node of a function call to h′ which is reachable
from node b′ = b′inh′

. Hence, b′ does not affect any guarding condition over any
recursive call to h′.

Algorithm 1 Algorithm for checking whether an input argument is termination-
inert.

1: function IsCallEquivInert(Program P , function f , argument v)
2: Build an SDG for P ;
3: for each call to f in this SDG do
4: if this call is reachable from node v = vinf

then return false;

5: return true;

Distribution A: Approved for public release; distribution is unlimited.

d24Enter h′

x′ = x′
inh′

x′ <= 0

h′(1− x′, b′)

x′
inh′ = 1− x′

d21return x′

retvalh′

b′ = b′inh′

b′! = 0

report(”...”)

b′inh′ = b′d22

Enter report′

d25 s′ = s′ihreport′

...

s′ihreport′
= ”...”

Fig. 7. The System Definition Graph [HRB90] of the sub-program starting in function
h′, defined in Fig 5.

Distribution A: Approved for public release; distribution is unlimited.

A.4 Partial equivalence with respect to a subset of outputs

The improvement reported in this section refines the output of the decomposition
algorithm for checking partial equivalence [GS11].

Recall that C functions may have multiple outputs, and that so far we defined
partial equivalence with respect to all of them, i.e., given the same inputs, the two
functions are equivalent in all output elements pair-wise. However, sometimes the
equivalence of some of the outputs is sufficient for proving mutual termination.

Example 6. Consider the functions listed at the top of Fig. 8. Formally, g and g′

are not partially equivalent because different values are assigned into p and p′,
which are among the outputs of g and g′, respectively. But the return values of
g and g′ are equivalent. This fact could be useful for establishing m-term(g, g′).

int g(int x, int *p) {
if (x < 5 || p == NULL)

return 0;
*p = 0;
g(g(x - 1, p), NULL);
return 0;

}

int g’(int x’, int *p’) {
if (x’ < 5 || p’ == NULL)

return 0;
*p’ = 1;
g’(g’(x’ - 1, p’), NULL);
return 0;

}

int gUF (int x, int *p) {
if (x < 5 || p == NULL)

return 0;
*p = 0;
UFg(UFg(x - 1, p), NULL);
return 0;

}

int g′UF (int x’, int *p’) {
if (x’ < 5 || p’ == NULL)

return 0;
*p’ = 1;
UF ′

g′(UF ′
g′(x’ - 1, p’), NULL);

return 0;
}

Fig. 8. Two versions of functions which are partially equivalent with respect to their
return values (at the top) and their isolated versions (at the bottom).

Consider gUF and g′
UF

listed at the bottom of Fig. 8. The obstacle for
proving call-equiv(gUF , g′

UF) is the fact that given the same inputs, UFg and
UF ′

g′ are not enforced to produce the same return values. But we may enforce
the equivalence of the return values of UFg and UF ′

g′ only, because g and g′ are
partially equivalent with respect to their return values.

⊓⊔

Let out(f) denote the list of output elements that function f produces.

Definition 4 (Partial equivalence of functions with respect to paired
elements of the outputs). Two functions f and f ′ are partially equivalent
with respect to 〈o, o′〉 such that o ∈ out(f)∧ o′ ∈ out(f ′) if any two terminating

Distribution A: Approved for public release; distribution is unlimited.

executions of f and f ′ starting from the same inputs, produce the same values
for o and o′.

Let p-equiv〈o,o′〉(f, f
′) denote the fact that f and f ′ are partially equivalent with

respect to 〈o, o′〉. For given o ∈ out(f) and o′ ∈ out(f ′), let f
o,o′

==== f ′ denote the
fact that given the same inputs f and f ′ produce the same values for o and o′,
respectively.

When RVT is activated for checking partial equivalence, it first attempts to
establish p-equiv(f, f ′) for each 〈f , f ′〉 which it is checking. Only if it fails to have
proven this, it checks the equivalence of output elements one by one. For each
pair of output elements 〈o, o′〉 with respect to which partial equivalence could
be proven, it assigns label part eq〈o,o′〉 to 〈f , f ′〉. Thereby it finds a maximal
mapping {〈o, o′〉 | o ∈ out(f)∧o′ ∈ out(f ′) ∧ p-equiv〈o,o′〉(f, f

′)}. This mapping
can be also useful when the outputs of f cannot be bijectively mapped with the
outputs of f ′.

Now we can refine (enforce-1) (see ([Ele13])):

UFf
o,o′

==== UF ′
f ′ ⇒

(

〈f, f ′〉 ∈ mapF ∧ p-equiv〈o,o′〉(f, f
′)
)

(enforce-2) (2)

We refine the implementation of uf’ in a manner compatible with this condition,
i.e., given the same inputs, the values of o and o′ are the same when 〈f , f ′〉 is
labeled part eq〈o,o′〉. Otherwise, the values of the output elements need not be
the same. The refined implementation of uf’ is shown at the bottom of Fig. 9.

B New proof methods

In this appendix, we list several research direction that we currently investigate,
all of which are targeted towards finding ways to prove equivalence in cases that
our current methods fails. Hence, it is also targeted towards completeness. The
methods are based on computing weakest-preconditions and k-induction.

B.1 Using Weakest Pre-Condition information

Before we overview the calculation of a WP, we shall recall the definition of a
Hoare Triplet {Q}S{R}. This notion states that when a pre-condition Q holds
before the execution of S then after the execution of S the predicate R will
be evaluated to true. A program statement can be viewed as a state trans-
former which transforms a pre-condition to a post-condition. We calculate a
pre-condition by transforming the post-condition each statement at a time back-
ward starting from the termination point. We shall now overview some of the
possible statements and how to transform the predicates. The following two lines
of code illustrate the calculation:

i=z+4;

z=i+z * 2;

Distribution A: Approved for public release; distribution is unlimited.

1: function uf(function index g, input parameters in) ⊲ Called in side 0
2: if in ∈ params[g] then return the output of the earlier call uf(g, in);

3: params[g] := params[g]
⋃

in;
4: return a non-deterministic output;

5: function uf’(function index g′, input parameters in
′) ⊲ Called in side 1

6: if in
′ ∈ params[g′] then return the output of the earlier call uf’(g′, in′);

7: params[g′] := params[g′]
⋃

in
′;

8: if in
′ ∈ params[g] then ⊲ 〈g, g′〉 ∈ mapF

9: result := [];
10: for each oi ∈ out(g) do ⊲ o′i ∈ out(g′)
11: if 〈g, g′〉 is marked as part eq or as part eq〈oi,o′i〉 then

12: append the result for oi of the earlier call uf(g, in′) to result;
13: else append a non-deterministic value to result;

14: return result;

15: assert(0); ⊲ Not call-equivalent: params[g′] 6⊆ params[g]

Fig. 9. Implementations for functions uf and uf’, where the latter takes into consider-
ation partial information about partial equivalence. uf and uf’ emulate uninterpreted
functions if instantiated with functions that are mapped to one another, and form a
part of the generated program δ, as shown in CallEquiv (see [Ele13]) or in the de-
terminization thereof. These functions also contain code for recording the parameters
with which they are called.

Distribution A: Approved for public release; distribution is unlimited.

Our desired post-condition is z > i + 3. We sequentially calculate the WP.
First we calculate the pre-condition of the second statement:

WP (z = i+ z ∗ 2, z > i + 3) = z >
3

2

. Finally we will calculate the pre-condition of the first statement:

WP

(

i = z + 4, z >
3

2

)

= i >
11

2

We received our pre-condition. Let us examine another example which includes
a conditional statement:

if (res % 2 == 0)

res = res - 1;

else

res = res + 1;

Our desired post-condition is res > 0. We receive:

WP (S, res > 0) ≡ ((res%2 == 0) ⇒ WP (res = res− 1, res > 0))∧

(¬ (res%2 == 0) ⇒ WP (res = res+ 1, res > 0)) ≡ ((res%2 == 0) ⇒ res > 1)∧

(¬ (res%2 == 0) ⇒ res > −1)

Motivating example Consider the following two programs:

int f0(int x){

if (x <= 0){

return 1;

}

int res = f0(x-1);

if (res < 0) return 3;

else return 2;

}

int f1(int x){

if (x <= 0){

return 1;

}

int res = f1(x-1);

if (res < 0) return 1;

else return 2;

}

Fig. 10. The two compared functions.

Both f0 and f1 are equivalent. One might claim that in case the variable
res, which is the result of the recursive call, might return a negative value and
cause the result value of the two functions to be different. However a closer
examination would reveal that both functions never return a negative result and
so the expression res < 0 always evaluates to false. Now we would like to prove

Distribution A: Approved for public release; distribution is unlimited.

int f0(int x){

if (x <= 0){

return 1;

}

int res = UF_f0(x-1);

if (res < 0) return 3;

else return 2;

}

int f1(int x){

if (x <= 0){

return 1;

}

int res = UF_f1(x-1);

if (res < 0) return 1;

else return 2;

}

Fig. 11. The two functions of Fig. 10, after the function calls are replaced with calls
to the same UF.

the equivalence of the two functions using uninterpreted function abstraction.
We do this by replacing the recursive calls of f0 and f1 to their matching
uninterpreted functions UF f0 and UF f1.

RunningCBMC to perform the equivalence proof requires the followingmain
function:

int main(void){

int in, out0, out1;

out0 = f0(in);

out1 = f1(in);

assert(out0 == out1);

return 0;

}

Fig. 12. The main function calls f0 and f1 with a nondeterministic input, and com-
pares their return values.

CBMC will output a failure when asserting the claim above. This example
manifests the incompleteness of this method. Abstracting away our function calls
to uninterpreted functions has resulted in information loss: the UF’s do not keep
the positive return value property. Whenever an assertion fails CBMC generates
a counterexample. In this case, examining the counterexample will demonstrate
the root cause of the failure: the UF’s had returned negative values. In the next
section I shall propose two methods to preserve information in some cases while
abstracting recursive calls to UF’s.

Proposed Solutions In this section I will describe two approaches which can
assist in enlarging the set of partially equivalent program pairs that we can prove
and thus improve completeness.

Strengthening UFs using weakest pre-condition In Figs.10 and 12 we
encountered two partially equivalent programs. However our original method

Distribution A: Approved for public release; distribution is unlimited.

failed to prove their equivalence. Now we shall attempt to solve this problem
using WP predicates. The assertion in Fig. 12 is the desired post condition of
partial equivalence. By calculating the weakest pre-condition as described in
section B.1 we can conclude that the weakest pre-condition required from the
the result of the UFs in Fig. 11 is resf0 ≥ 0 ∧ resf1 ≥ 0

We shall formulate the following proof rule:

p-equiv(call f, call f ′) ∧WP ⊢H p-equiv(call f, call f ′) ∧WP

p-equiv(call f, call f ′) ∧WP

The proof rule is very similar to the proof rule at figure ?? with the addition of
the conjunction with the WP formula. This conjunction is used to strengthen
our induction. Let us return to our example and show how the new strengthened
proof rule is used when translated to code. First we remind that uninterpreted
functions keep the premise of the partial equivalence rule as shown in [GS08].
Now we add to our code the WP premise. We add the required weakest pre-
condition assumption to both our functions. By adding the weakest pre-condition
we receive the following code:

int f0(int x){

if (x <= 0){

return 1;

}

int res = UF_f0(x-1);

assume(res >= 0);

if (res < 0) return 3;

else return 2;

}

int f1(int x){

if (x <= 0){

return 1;

}

int res = UF_f1(x-1);

assume(res >= 0);

if (res < 0) return 1;

else return 2;

}

Fig. 13. The two functions of Fig. 11, after adding the weakest pre-condition predicate
as an assumption

To have a consistent inductive proof rule we must also alter the main function
in the following way:

int main(){

int n, res0, res1;

ret0 = f0(n);

ret1 = f1(n);

assert(ret0 == ret1 && ret0 > 0 && ret1 > 0);

return 0;

}

CBMC returns ‘verified’ on these two functions, hence we were able to prove
the step of the induction. If we examine the process of calculating the WP
formula more closely we can see that we start with a premise that both function
output the same value and calculate the required condition that must hold at

Distribution A: Approved for public release; distribution is unlimited.

a certain point in the code so that the premise will be true. From this we can
conclude the following relation: out == out′ ⇐⇒ WP . It is obvious that we can
remove the equality assertion and still receive the same result.

B.2 K-Induction

The standard induction proof rule over the natural numbers can be formulated
as follows:

P (0) → (∀nP (n− 1) → P (n) → ∀nP (n)) , (3)

where P is the formula we wish to prove.

A generalization called k-induction, was proposed by [SSS00]:

k−1
∧

i=0

P (i) ∧ ∀n

((

k−1
∧

i=0

P (n+ i)

)

→ P (n+ k)

)

→ ∀nP (n) . (4)

Note that this formula is a generalization of (3) when k = 1. We propose to use
k-induction in order to improve the completeness of regression verification.

Implementing K-Induction Recall the two functions in Fig. 10, and their
abstraction in Fig. 11. Recall that the abstract version was too abstract, which
prevented us from proving partial equivalence. Let us attempt to solve this prob-
lem using 2-Induction.

int f0_2(int x){

if (x <= 0){

return 0;

}

int res;

res = UF_f0(x-1);

if (res < 0) return 3;

else return 2;

}

int f0_1(int x){

if (x <= 0){

return 0;

}

int res = f0_2(x-1);

record_out_f0_2 = res;

if (res < 0) return 3;

else return 2;

}

int f1_2(int x){

if (x <= 0){

return 0;

}

int res;

res = UF_f1(x-1);

if (res < 0) return 1;

else return 2;

}

int f1_1(int x){

if (x <= 0){

return 0;

}

int res = f1_2(x-1);

assume(res == record_out_f0_2);

if (res < 0) return 1;

else return 2;

}

Fig. 14. The programs of Fig. 11, unrolled twice.

Distribution A: Approved for public release; distribution is unlimited.

In Fig. 14 we have unrolled the two functions twice. We say that f0 1 and
f1 1 are a first level functions and f0 2 and f1 2 are a second level functions.
The functions on the first level call their matching functions on the second level
and the second level functions call the matching UFs.

In section ?? we mentioned that when proving the inductive step, the in-
ductive assumption is implemented by the UFs, however to prove the induction
step with 2-induction we will need another level of assumption. We implemented
this using another assumption in both f0 1 and f1 1 which assumes the equality
of the results in the first level. We implemented this using the global variable
record out f0 2 which records the result of side 0 in the second level.

B.3 Combining K-Induction and weakest pre-condition

Combining both methods may improve completeness even further. We implement
this by replacing the equivalence assumption with the weakest pre-condition
predicate. Fig. 15 exhibits this. Note that the UFs no longer supply us with
the required inductive step assumption and therefor we must add an additional
assumption.

int f0_2(int x){

if (x <= 0){

return 0;

}

int res;

res = UF_f0(x-1);

assume(res > 0);

if (res < 0) return 3;

else return 2;

}

int f0_1(int x){

if (x <= 0){

return 0;

}

int res = f0_2(x-1);

assume(res > 0);

record_out_f0_2 = res;

if (res < 0) return 3;

else return 2;

}

int f1_2(int x){

if (x <= 0){

return 0;

}

int res;

res = UF_f1(x-1);

assume(res > 0);

if (res < 0) return 1;

else return 2;

}

int f1_1(int x){

if (x <= 0){

return 0;

}

int res = f1_2(x-1);

assume(res > 0);

if (res < 0) return 1;

else return 2;

}

Fig. 15. The programs of Fig. 14 with weakest pre-condition assumptions.

When combining the two methods we must separate the base case proof from
the inductive step proof. Our original method will succeed in proving the partial
equivalence of the two functions in Fig. 16 even though they are not equivalent

Distribution A: Approved for public release; distribution is unlimited.

due to the negative return value. This proof doesn’t fail as it should because the
weakest pre-condition assumption blocks all paths where the UFs can return a
negative value.

We prove our base case step by making two transformations to our original
method. First we convert all UF calls back to recursive calls. We do this by
adding a new global boolean variable base, when verifying the base case its
value is true and false otherwise. The mechanism is displayed in the following
code:

if (base) res = f0_1(x-1);

else res = UF_f0(x-1);

Second when the base variable is set to true we limit CBMC to unwind the
recursion to k and run it. Now CBMC will explore all k level base cases. In
Fig. 17 we can see the functions from Fig. 16 modified to handle the base case
proof. CBMC indeed returns ’un-verified’ when given the modified functions.

int f0(int x){

if (x <= 0){

return 1;

}

int res = UF_f0(x-1);

assume(res >= 0);

if (res < 0) return 3;

else return -1;

}

int f1(int x){

if (x <= 0){

return 1;

}

int res = UF_f1(x-1);

assume(res >= 0);

if (res < 0) return 1;

else return -1;

}

Fig. 16. The two functions of Fig. 11 with a negative return value.

int f0(int x){

if (x <= 0){

return 1;

}

if (base) res = f0_2(x-1);

else res = UF_f0(x-1);

if (!base) assume(res >= 0);

if (res < 0) return 3;

else return -1;

}

int f1(int x){

if (x <= 0){

return 1;

}

if (base) res = f1(x-1);

else res = UF_f1(x-1);

if (!base) assume(res >= 0);

if (res < 0) return 1;

else return -1;

}

Fig. 17. The two functions of Fig. 16 with base case handling code.

Distribution A: Approved for public release; distribution is unlimited.

B.4 Comparing K-Induction and weakest pre-condition

In my thesis I would like to explore the relation between the WP method and
the k-induction partial equivalence proof method. In the example shown be-
fore their strength is equal. While 1-induction was unable to prove what WP
managed to prove, 2-induction was sufficient. Another interesting topic is the
relation between different characteristics of the program and the required level
of induction: can this level be computed? can we compute a bound on this level?

B.5 K1, K2 Induction

int f1(int x){

n1++;

if (x <= 1) return 0;

int res = f1(x - 1) + 1;

return res;

}

int f2(int x){

n2++;

if (x <= 1) return 0;

x--;

if (x <= 1) return 1;

int res = f2(x - 1) + 2;

return res;

}

Fig. 18. Two equivalent recursive programs that iterate a different number of times
given the same input.

Consider the example in Fig. 18. It shows an optimization called Loop Un-
winding, in a recursive function format. This optimization may result in several
benefits such as reduced branch prediction penalties, better parallelization, and
more. These optimizations can be produced automatically by the compiler or
manually. Often we would like to check partial equivalence between two similar
functions where one is some sort of an unwinding optimization of the other.

Our previous method of k-induction will fail to prove the equivalence of the
two previous functions because the bodies of the functions are not equivalent
and also the recursive calls on each side are different. However if we can receive
the relation between the unrolling of the functions from the optimizer we can
use it to perform a K1 −K2 induction.

Distribution A: Approved for public release; distribution is unlimited.

